La radioprotection doit être refondée, ses bases scientifiques sont erronées

par Paul Lannoye

La CIPR (Commission Internationale de Protection contre les Radiations) publie depuis 1950 ses recommandations de radioprotection. La publication de 2007 est à la base des législations nationales actuellement en vigueur.

Faibles doses?

- Il faut considérer comme <u>faibles doses</u> celles qui ne provoquent pas d'effet à court terme et qu'on pourrait a priori considérer comme inoffensives.
- Les normes Euratom sont calquées sur les recommandations de la Commission internationale de protection contre les radiations (CIPR).

Principes de base de la radioprotection

- 1. <u>Justification</u> Toute pratique entraînant une exposition aux rayonnements ionisants doit être justifiée par ses avantages économiques, sociaux et autres.
- 2. <u>Optimisation</u> Toutes les expositions sont maintenues au niveau le plus faible raisonnablement possible (ALARA), <u>compte tenu des facteurs économiques et sociaux</u>.
- 3. <u>Limitation</u>. La somme des doses reçues du fait des différentes pratiques ne dépasse pas la limite de dose imposée.

Normes de radioprotection

• Il n'y a pas de seuil de dangerosité pour l'exposition aux rayonnements ionisants. Mais pour des raisons pratiques, on considère qu'en dessous d'une dose « efficace » de 1m Sv/an, le risque est négligeable et acceptable.

Directive Euratom 2013/59 du 5 décembre 2013 - http://eur-lex.europa.eu/legal-content/FR/TXT/?uri=CELEX%3A32013L0059 et Recommandations de la CIPR - http://irsn.fr/FR/Larecherche/publications-documentation/collection-ouvrages-IRSN/Documents/CIPR 103.pdf

Normes de protection contre les rayonnements ionisants

- La dose maximale admissible (DMA) pour le public résultant de toutes les pratiques humaines est de 1m Sv/an (le <u>Sievert</u> est l'unité de dose efficace d'irradiation)
- On ne mesure pas la dose efficace. On la calcule à partir de la mesure de l'irradiation externe et d'une évaluation de l'irradiation interne basée sur la dose moyenne absorbée et sur des facteurs de pondération sensés prendre en compte le type de radioactivité et le comportement interne des radioisotopes.
- La <u>dose efficace</u> est la somme des doses absorbées par les différents organes, multipliée par un facteur de pondération tissulaire propre à chaque organe.
- Le terme « efficace » signifie qu'il n'est tenu compte que des cancers mortels causés par les rayonnements et des dommages génétiques subis par la première génération de descendants.
- Les constats effectués au long des 30 dernières années invalident les postulats de base, les valeurs-limites et le modèle de risque.

Effets sur la santé des faibles doses de rayonnement non pris en compte par la CIPR

- Cancers non mortels
- Augmentation de la mortalité infantile
- Réduction du taux de natalité
- Faible poids à la naissance
- Détérioration générale de la santé et vieillissement prématuré

Risques d'effets héréditaires, selon la CIPR

- Il n'existe pas de preuve directe que l'exposition de parents aux rayonnements conduise à un excès de maladies héréditaires dans leur descendance.
- Cependant, la Commission estime qu'il existe des preuves irréfutables que les rayonnements provoquent des effets héréditaires chez les animaux utilisés dans les études expérimentales.
- La CIPR considère désormais le risque génétique uniquement jusqu'à la 2ème génération. Selon elle, il n'y a pas de différence substantielle entre les risques génétiques exprimés à la 2ème ou à la 10ème génération.

CIPR publ.103 Recommandations 2007

Risques pour l'embryon et le foetus, selon la CIPR

- Les données récentes confirment la sensibilité de l'embryon aux effets létaux de l'irradiation pendant la période de pré-implantation : à des doses inférieures à 100 mSv, les effets létaux seront très rares.
- Pour l'induction de malformations, la CIPR estime qu'il existe un seuil de dose aux alentours de 100 mSv. Il n'y a pas de risque si la dose est bien en-dessous de 100 mSv.
- Les données sur les survivants d'Hiroshima et Nagasaki montrent qu'une irradiation inférieure à 300 mSv entraine des effets non significatifs.

CIPR 90 (2003) et Recommandations 2007

Risque de cancer après une irradiation in utero, selon la CIPR

• Le risque de cancer sur la vie entière après une exposition in utero est similaire à celui qui existe après une irradiation dans la jeune enfance, c'est-à-dire au plus de l'ordre de trois fois celui de la population dans son ensemble.

CIPR 90 (2003) et Recommandations 2007

Impact de Tchernobyl

• Des milliers d'études ont été réalisées et publiées depuis 1986 sur les conséquences de la catastrophe. Une synthèse des travaux publiés en langue russe a été effectuée par A. Yablokov, V. Nesterenko et A. Nesterenko et publiée en anglais par l'Académie des Sciences de New-York en 2011.

Cancer de la thyroïde

• La prévalence et les caractéristiques du cancer de la thyroïde après Tchernobyl différent nettement des données de référence basées sur Hiroshima et Nagasaki.

Les cancers post-Tchernobyl

- 1. Sont nettement plus précoces (pas 10 ans après l'irradiation mais 3 à 4 ans après).
- 2. Se développent sous une forme beaucoup plus agressive.
- 3. Affectent non seulement les enfants mais aussi les adultes (au moment de l'irradiation).

Alexey Yablokov, Annals of the New York Academy of Sciences, vol 1181-2008 - http://t.ymlp14.com/yjuqazaejuuyanamueaoabhhs/click.php

Cancers de la thyroïde prévus et cas mortels

Malko, 2007 - http://www.physiciansofchernobyl.org.ua/eng/Docs/Malko.pdf

Pays	Cancers de la thyroïde	Mortalité résultante
Biélorussie	31.400	9.012
Ukraine	18.805	5.397
Russie	8.626	2.476
Italie	5.162	1.481
Roumanie	3.976	1.141
Pologne	3.221	924
Grèce	2.879	826
Allemagne	2.514	721
France	1.153	331
Belgique	239	69
Total pays européens	92.627	26.584
Total incluant Belarussie, Russie et Ukraine	58.831	16.885

Taux de cancers consécutifs à l'accident de Tchernobyl dans le Nord de la Suède

• L'étude de Martin Tondel a mis en évidence un accroissement du taux de cancers de 11 % pour une contamination de 100 kBq/m² en Cs 137. On peut évaluer la dose efficace engagée à 1 mSv. Le modèle CIPR prévoit un risque relatif supplémentaire de 0,45 par Sv. Les résultats de Tondel montrent une sous-évaluation de 490 fois par le modèle CIPR.

Martin Tondel et al : Increase of total cancer incidence in North Sweden due to Tchernobyl accident, Journal of Epidemiol. Community Health, n° 58, 2004 - https://www.researchgate.net/publication/262192605_Cancer_incidence_in_northern_Sweden_before_and_after_the_Chernobyl_nuclear_power_plant_accident

Travailleurs exposés à de faibles doses

- Une étude consacrée aux travailleurs exposés à de faibles doses couramment enregistrées dans l'industrie nucléaire en France, aux Royaume-Uni et aux États-Unis montre un accroissement linéaire du taux de cancer avec une exposition croissante aux radiations.
- L'hypothèse, adoptée par la CIPR, selon laquelle une exposition à des débits de dose élevés serait plus dangereuse qu'à débit de dose faible est invalidée par cette étude.

British Medical Journal, 20 octobre 2015 - http://www.bmj.com/content/351/bmj.h5359

Augmentation du Syndrome de Down après exposition in utero du fait de l'accident de Tchernobyl

Busby & al, 2008 - http://enfants-tchernobyl-belarus.org/virtubook/etb-093/

Régions	Résultats
Biélorussie/ registre national de suivi génétique	Augmentation de 1987à 1994 d'environ 17%. Pic d'augmentation en janvier 1987
Europe de l'Ouest	Commençant 1 an après l'accident, atteignant 22% dans les 3 ans.
Suède	Légère augmentation dans les zones les + exposées (30%)
Ecosse, région du Lothian (0,74 million d'habitants)	Pic d'augmentation en janvier 1987
South Germany	Augmentation trouvée par les études sur le liquide amniotique.
Berlin ouest	Pic d'augmentation en janvier 1987

Augmentation observée de la mortinatalité, de la mortalité infantile, des fausses couches et des cas de faible poids à la naissance après exposition in utero du fait de l'accident de Tchernobyl (Busby & al., 2008)

Pays	Effets
Biélorussie District de Chechersky Région de Gomel	Mortalité périnatale Mortalité périnatale
Ukraine District de Polessky, près de Kiev Région de Lugyny Région de Kiev	Mortalité périnatale, réduction du taux de naissance, naissances prématurées Mortalité précoce de nouveau-nés Fausses couches.
Grèce, Hongrie, Pologne, Suède	Mortinatalité
Norvège Hongrie Finlande	Fausses couches. Faible poids à la naissance Naissances prématurées parmi des enfants malformés.
Allemagne Total (RDA et RFA) Allemagne du Sud Bavière	Mortalité périnatale, mortinatalité, Mortalité infantile Réduction du taux de naissances.

Effets tératogènes observés à la suite de l'accident de Tchernobyl

Pflugbeil & al, Health Effects of Chernobyl, IPPNW, 2011 - http://ippnw.org/pdf/chernobyl-health-effects-2011-english.pdf

Pays	Effets	références
Biélorussie Registre de monitoring national génétique	Anencéphalie, Spina Bifida, lèvres et palais fendus; polydactylie; atrophie musculaire des membres	Lazjuk et al. 1997
Biélorussie Forte contamination de la région de Gomel, de Moguilev et de Brest	Malformations congénitales	Bogdanovich 1997; Savchenko, 1995 Kulakov et al. 1993 Petrova et al.1997 Shidlovskii 1992
Ukraine région de Kiev et de Lygyny	Malformations congénitales	Kukalov et al 1993 Godlevsky, Nasvit 1998
Turquie	Anencéphalie, Spina Bifida	Akar1988/89, Caglayan, 1990
Bulgarie (Pleven)	Malformations du cœur et du système nerveux central; multiples malformations	
Croatie	Malformations mort-nés et morts prématurées	Kruslin et al. 1998
Allemagne	Lèvres/palais fendus; malformations congénitales; malformations des mort-nés; diverses malformations	Zieglowski, 1999; Scherb,2004; Körblein,2003-2004; Weigelt 2003; Lotz et al,1996

Problèmes de santé observés chez les enfants après exposition in Utero du fait de l'accident de Tchernobyl, à l'exception des malformations, du syndrome de Down et du cancer (Busby et al., 2008)

Régions	Résultats
Biélorussie	Désordres mentaux; confusion de langage, retard mental.
District de Chechersky (Gomel)	Maladies du système respiratoire, du sang, de la circulation, etc
District de Stolin	Maladies du système respiratoire, des glandes, du sang, de la circulation et des organes digestifs.
Biélorussie, Ukraine, Russie	Retard mental et autres désordres mentaux
Ukraine	Retard mental & autres désordres mentaux. Maladies du système respiratoire, du sang, de la
District de Polessky près de Kiev	circulation ,,, Morbidité infantile
Evacués de Prypiat et de la zone hautement contaminée Province de Rovno	Morbidité infantile
Immigrants vers Israël venant des zones	Morbidité infantile

• Ces conséquences de Tchernobyl pour l'embryon et le foetus ne sont pas explicables au vu des faibles doses en jeu : < 2 mSv

Explications plausibles

- 1.Les valeurs retenues de dose efficace sont sous-estimées du fait :
 - soit du rôle joué par les dépôts de Pu 239 et de Sr 90 et des particules chaudes au-delà des zones d'impact calculées.
 - soit de l'inadéquation des facteurs de dose retenus pour l'inhalation et l'ingestion des radionucléides, spécialement pour l'embryon et le fœtus.
- 2. La relation dose-effet pour les différents stades de la gestation est inconnue pour l'irradiation interne.

Effets génétiques

- Les données épidémiologiques à la base des recommandations de la CIPR sont celles obtenues par l'étude des survivants japonais.
- Les effets génétiques sont apparus comme identiques dans le groupe contrôle et le groupe exposé aux radiations.

Explications:

- La contamination résiduelle a été ignorée ;
- L'accroissement de la mortalité dans le groupe exposé a masqué les effets génétiques.
- Il a été démontré qu'une dose de 1mSv due à la contamination pouvait causer 50 % de malformations supplémentaires (le risque relatif est de 0,5 mSv à 1 mSv; il tombe à 0,1 mSv pour 10 mSv et au-delà reste stable).
- L'erreur du modèle CIPR est d'un facteur 1000.

(Schmitz-Feuerhake & al., 2016)

Cancer in children after preconceptional low-dose exposure of parents

Inge Schmitz-Feuerhake & al, Genetic radiation risks : a neglected topic in the low dose dabate, 2016 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870760/#b64-eht-31-e2016001

Exposed collective	Malign disease	Gonadal dose/mSv	Relative risk	Doubling dose/mSv
Seascale fathers	Leukaemia + lymphoma			
All stages of spermatogenesis		200	7	32
6 mo before conception		10	1.9	1.6
Further occupational exposure of fathers				
Military jobs	Cancer		2.7	
Regions of UK	Leukaemia + lymphoma		3.2	
Preconceptional X-ray diagnostics in	Leukaemia			
Fathers 1966			1.3	
Fathers 1988			1.4-3.9	
Fathers 1994			3.8	
Mothers 1958			1.4	25
Mothers 1966			1.7	
Mothers 1973			1.4	
Mothers 1980			2.6	

Congenital anomalies, especially malformations, in descendants (1st generation) of occupationally exposed men

Inge Schmitz-Feuerhake & al, Genetic radiation risks : a neglected topic in the low dose debate, 2016

	Cohort of fathers	Kind of defect	Dose	References
1	Radiologists USA 1951	Congenital malformations Increase 20%		Macht, et al. 1955
2	Workers of the Hanford Nuclear facility, USA	Neural tube defects significantly increased by 100%	In general <100 mSv	Sever et al. 1988
3	Radiation workers at Sellafield nuclear reprocessing plant, UK	Stillbirths with neural tube defects significantly increased by 69% per 100 mSv	Mean 30 mSv	Parker et al. 1999
4	Radiographers in Jordan	Congenital anomalies significantly increased 10-fold		Shakhatreh 2001
5	Liquidators from Obninsk (Russia), 300 children	Congenital anomalies increased 1994-2002	Mainly 10-250 mSv	Tsyb et al. 2004
6	Liquidators from Russia, Bryansk region	Congenital anomalies increased about 4-fold		Matveenko et al. 2006
7	Liquidators from Russia, 2379 newborns	Significant increase for: anencephaly 310%, spina bifida 316%, cleft lip/palate 170%, limb reduction 155%, multiple malformations 19%, all malformations 120%	5-250 mSv	Lyaginskaja et al. 2009
8	British nuclear test veterans	All malformations Down's syndrome OR 1.6 for early vs. later	Less than 10 mSv but internal	Urquhart 1992
9	British nuclear test veterans	births All congenital conditions increased We estimate heart defect 4-fold	Less than 10 mSv but internal	Roff 1999
10	British nuclear test veterans case control/ EUROCAT study	Miscarriages odds 2.7	Less than 10 mSv but internal	Busby et al. 2014
		Congenital conditions: children OR 9.8; grandchildren OR 8.3 ^a		

Effets génétiques sur la faune

- La spermatogénèse est très sensible aux effets environnementaux, en particulier aux rayonnements radioactifs.
- Dans les zones contaminées autour de Tchernobyl, 9 espèces d'oiseaux sur 10 présentent des taux élevés d'anomalies dans le sperme.
- Dans les zones les plus contaminées, 40 % des oiseaux mâles sont stériles.

Timothy Mousseau - Forum scientifique et citoyen sur les effets génétiques des rayonnements ionisants, Genève, nov. 2014 http://independentwho.org/fr/2014/12/05/forum-2014-effets-genetiques/

- Le Sex ratio à la naissance est perturbé par les faibles doses dues à la contamination par les produits de fission.
- Les études de H. Scherb et K. Voigt montrent une modification statistiquement significative du sex ratio humain à la naissance (le rapport du nombre de garçons nés par rapport au nombre de filles),
 - a) après les essais nucléaires dans l'atmosphère,
 - b) après Tchernobyl,
 - c) au voisinage des installations nucléaires.
- Le sex ratio est considéré comme une mesure du dommage génétique, la mortalité prénatale de l'un ou l'autre sexe dépendant du type d'exposition (mères ou pères). Selon les auteurs, des millions de bébés ont été tués in utero par ces expositions.

H. Scherb & K. Voigt, reproductive toxicology, vol 23, juin 2007 - http://www.sciencedirect.com/science/article/pii/S0890623807000445

Études mettant en évidence le risque de leucémies et de cancers excédentaires chez les enfants vivant à proximité d'installations nucléaires

Installation nucléaire	Année	Multiplicateur du risque défini par la CIPR
Sellafield, Windscale, RU	1983	100-300
Dounray, RU	1986	100-1000
La Hague, France	1993	100-1000
Aldernaston/BurghfiedRU	1987	200-1000
Hinkley point, RU	1988	200-1000
Harwell	1997	200-1000
Kruemmel, Allemagne	1992	200-1000
Julich, Allemagne	1996	200-1000
Barsebaeck, Suède	1998	200-1000
Chepstow, RU	2001	200-1000

Étude KIKK en Allemagne https://doris.bfs.de/jspui/handle/urn:nbn:de:0221-20100317939

- L'étude publiée en 2007 en Allemagne sur le risque de cancer des enfants met en évidence un risque de cancer augmenté de 50 % pour les enfants de moins de 5 ans dans un rayon de 5 km autour des centrales nucléaires pour la période 1980-2003.
- La leucémie est le type de cancer le plus répandu.

Nucléaire et leucémies : l'étude GeoCAP (janvier 2012)

http://onlinelibrary.wiley.com/doi/10.1002/ijc.27425/full

- L'étude GeoCAP sur le risque de leucémie aigüe de l'enfant autour des centrales nucléaires françaises met en lumière un risque accru de 90 % de développer une leucémie aigüe chez les enfants résidant à moins de 5 km des centrales nucléaires, par rapport à ceux qui vivent à 20 km ou plus loin.
- Une méta-analyse de l'incidence de la leucémie infantile et de la mortalité au voisinage des centrales nucléaires dans le monde a porté sur 136 sites nucléaires (8 pays ont été inclus : Royaume-Uni hors Écosse, Canada, États-Unis, France, Allemagne, Japon, Écosse, Espagne). Elle a montré un accroissement statistiquement significatif du taux de leucémies au voisinage des centrales nucléaires

Baker & Hoel - European Journal of Cancer, 16, 2007 - http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2354.2007.00679.x/abstract

- Le modèle CIPR est gravement incorrect aux plans physique et chimique. Les études épidémiologiques mettent en évidence des effets à des doses qui, selon ce modèle, sont trop faibles pour provoquer le moindre effet.
- Dans de nombreux cas d'exposition interne, la dose locale à l'ADN ou au tissu critique est beaucoup plus élevée que la dose absorbée moyenne.

Exemples

- Les éléments qui se lient chimiquement à l'ADN à cause de leur grande affinité : strontium 90, baryum 140, plutonium 239, uranium.
- Les éléments absorbés sous forme de particules micrométriques ; particules chaudes comme celles d'uranium appauvri ou éléments combustibles rejetés par un réacteur accidenté...
- Les éléments parties d'une séquence de désintégration donnant naissance à des radio-isotopes à très courte demi-vie, tels le strontium 90, le tellure 132 et le baryum 140.
- Les éléments à faible énergie de désintégration comme le tritium, pour lesquels une faible dose correspond à de nombreux impacts internes.
- Les éléments qui ne sont pas nécessairement radioactifs mais amplifient le rayonnement gamma naturel par émission photoélectrique, tels l'uranium, le platine et l'or.

Conclusions

- Dans la situation actuelle, les normes de radioprotection protègent plus l'industrie nucléaire que la santé des populations et des travailleurs.
- Le modèle CIPR doit être réévalué vu l'accumulation de données qui l'invalident.
- Le principe de justification doit être appliqué en toute rigueur ; rien ne permet d'accepter le rejet massif dans l'environnement de substances mutagènes, cancérigènes et reprotoxiques.
- Le principe de précaution doit l'emporter sur toutes autres considérations.
- Un accident catastrophique de niveau 7 (Tchernobyl et Fukushima) est écologiquement, humainement et politiquement insupportable. Il est primordial de s'en prémunir définitivement.